GFG Microsystems Limited

GFG Microsystems Limited
IT Department

[image: image1.png]

Information Technology Department

 Commenting and Layout Checklist Standard
GFG Microsystems Limited
GFG IT Development
GFG IT
 Commenting and Layout Checklist Standard
Standards
SO
0.01
GFG IT SET DOCUMENT “-UK-99-SO 17/0.01"
GFG IT-UK-99-SO 17/0.01

12 December 1997
You will be notified if any standard is revised; it is your responsibility to obtain up-to-date personal copies of standards and to destroy old ones.

DOCUMENT DISTRIBUTION

Document Identification

Document Ref:

GFG IT-UK-99-SO 17/0.01

Authors Ref:

s017o001.DOC

Author:

Date:

12 December 1997

Dept/Section:

GFG IT Development

Version:

0.01

Reason for Distribution

For Review

Status:

Draft

Distribution of Approved Version:

Reviewers
Department
Responsibilities
Comments Received

Issued By:

..

...

Copy No:

Issued To:

CONTENTS

51
INTRODUCTION

1.1
Purpose
5
1.2
Scope
5
1.3
Related CSG IT Standards
5
1.4
Revision History
5
2
COMMENTS
6
2.1
Modules
6
2.2
Routines
6
2.3
Detailed Source Code Contents
7
2.4
Declarations
9
2.5
Program Logic
11
3
LAYOUT
12
3.1
Indent control structures
12
3.2
Separate control structures
12
3.3
Make labels visible
12
3.4
Make branches visible
12
3.5
Align table entries
12
3.6
Make comments visible
12
3.7
Make layout maintainable
12
3.8
Make layout consistent
12
A
Summary of Checklist
13
A.1
Modules
13
A.2
Routines
13
A.3
Code
13
A.4
Declarations
14
A.5
Program Logic
14
A.6
Layout
14

1 INTRODUCTION

1.1 Purpose

The purpose of this standard is to provide a checklist for use

a) as guidance during the coding activity

b) as a reference for determining the quality of code produced as part of the quality assurance activity

1.2 Scope

This standard covers the commenting and layout of all code written in procedural
 programming languages.

For any particular programming language an additional standard checklist may exist containing:

a) specific interpretations of the general rules given here

b)
details of circumstances under which the rules given here may be relaxed

1.3 Related GFG IT Standards

The reader should be familiar with the following documents that supplement the contents of this Standard.

[1]
GFG IT UK
SO
18
Coding Checklist

1.4 Revision History

Version
Date
Author
Description
Sections Affected

0.01
97/12/12
GFG
First draft
All, diagrams and forms to be added

COMMENTS

All comments MUST be written and included in the source file when the code is written. Comments must not, under any circumstances at all, be left out "to be added later". All comments should be accurate, meaningful and supply additional information.

1.5 Modules

A module is a logically related set of routines and/or data which, where possible, consists of a single source file. When a module consists of multiple source files the description of the module interface should be kept in one place.

1.5.1 Module header comment

Every module must begin with a comment that contains the following information.

1.5.2 Configuration control

The module's name and version number, design documentation reference and program specification reference.

1.5.3 Module history

A list of amendments that have been made to the module: each entry will contain the version number at which the amendment was applied, a brief description of the amendment (referring to any change control documents involved) and the date and the name of the programmer making the amendment.

1.5.4 Module entry points

A list of all routines and data that are declared within the module and available for use outside it: a brief description of each is necessary but a full interface specification is optional as this information is contained in routine header comments and declaration comments.

(Exception: An assembler language module which consists solely of global data need not have the entry point list if it has instead a comment to the effect that all data declared is exported.)

1.6 Routines

A routine is a procedure declaration in languages which have such constructs, or an equivalent code sequence.

1.6.1 Routine header comment

Every routine must begin with a routine header comment which contains the following information. (Exception: when a number of routines with identical interfaces appear contiguously and are logically related, the interface specification need only be given once for the group.) Differentiate between routines which can be called externally from a module and those that are internal.

1.6.2 Routine name

in a distinctive box or otherwise picked out for easy visibility.

1.6.3 Parameter specification

All parameters to the routine must be listed and their uses and allowed values described. Any parameters whose value can be changed by the routine must have the possible changed values described.

1.6.4 Side effects

Any side effects that the routine has, eg. updating variables which are neither local to the routine nor parameters, must be noted.

1.6.5 Function

The function of the routine is described, including identification of algorithms used (METHOD) which may use references to more detailed documentation contained elsewhere.

1.6.6 Result

The result passed back by a routine must be described in the same way as a parameter whose value the routine can change. If desired, changed parameters, side effects and results may be described together as these are all aspects of the effects of a routine on its environment.

1.7 Detailed Source Code Contents

When a routine performs more than one distinct action and is more than a very few lines long a block comment should be used to describe each action.

1.7.1 Block comment

Describes a section of code within a routine. If necessary the interface to that section of code is described in terms of the local variables.

There is little requirement for comment on individual lines of code in high level languages except where something unusual or complicated is going on. Comments should be written when there is:

1.7.2 Obscure code

(which can't be eliminated)

1.7.3 Complicated code

(even when the detailed operations are straightforward)

There is considerably more need for detailed comments in low level programming (such as C or assembler):

1.7.4 Conditional transfers of control

must be commented

1.7.5 Unconditional transfers of control

should normally be commented, particularly if they are not very local

1.7.6 Instructions with side effects

(e.g. on flags) should have these noted if the side effects are either used or able to cause trouble.

1.7.7 Instructions used for side effects

other than the main use of the instruction should be noted. e.g. the use of a link instruction to load a register without branching, or the use of an arithmetic instruction to set a flag, or the use of an arithmetic or logical instruction to load a constant into a register, or the use of a load or store (or any other) instruction to perform memory-mapped input/output. Relaxation of this rule will apply (see standards for particular machines) when particular such uses of instructions are deemed to be conventional and not to require commenting.

1.7.8 Critical regions of code

which have restrictions on the modifications that may be applied to them must be clearly noted. Examples might be:

1.7.9 Preservation of registers or flags

over unusually long sequences of instructions.

1.7.10 Abnormal contents of registers or flags

e.g. linkage or stack handling registers, over a sequence of instructions.

1.7.11 Abnormal hardware state

e.g. interrupts inhibited or program faults disabled over a sequence of instructions: any consequent restrictions (e.g. the lack of a stack or requirement not to modify certain registers while in an interrupt handler) must be clearly described.

1.7.12 Assumptions about timing

of code sequences and the limits within which modifications are allowed must be described.

1.7.13 Assumptions about positioning

where the alteration of code can result in invalid addresses, e.g. a set of interrupt vectors, must be described.

1.7.14 Critical code size

(where alteration might overflow a size limit imposed by, e.g. ROM size, addressing range of special hardware, short-range jumps or data reference or literal pool references etc.) must be documented and the limits within which modifications are allowed must be specified.

Declarations

Every declaration must be commented. The comment may give a reference to more complete documentation that appears elsewhere, however inline comments are more convient to keep uptodate. This checklist is not exhaustive and contains points that do not apply to all declarations.

1.7.15 Comment each field

When the object declared is a data structure the -comment should cover the relevant points for each field.

1.7.16 Meaning of constants

The use of any declared constant or constant appearing in a declaration must be described.

1.7.17 Allowed values of constants

One of the reasons for declaring named constants is to allow easy changing of values: the values that could be allowed as alternatives to the declared value of a constant must be described.

1.7.18 Relationships between constants

If a relationship exists between values of declared constants or values used in declarations then these must be described.

Examples:

two array bounds which must be the same;

a set of named constants which must be contiguous;

a named constant that must always be less than another named constant.

1.7.19 Abstract type of variables

In most languages, user concepts must be mapped onto a limited set of language types or modes. The abstract type should be described.

Example:

an object of type "buffer index" might have to be declared as language type "integer".

1.7.20 What variables are used for

The purpose of the declaration must be described, and any variation from naming conventions.

1.7.21 Where variables are used

e.g. within which module or set of routines. (Where this is obvious (e.g. a loop control variable implicitly declared) this information may be omitted.)

Program Logic

COMMENT ALL ASSUMPTIONS OR ALGORITHMIC RELATIONSHIPS ASSUMED IN ARRIVING AT CODE.

1.7.22 Parameter ranges identified

All parameters about which assumptions are made which are not validated should be commented (c.f. 2.2.3).

1.7.23 Validity checks

All validity checks should be clearly commented. Any checks that are not included should be commented with reasons.

1.7.24 Logic assumptions

All assumptions made at arriving at code, range checks omitted or events which for algorithmic reasons cannot (should not) occur must be identified in comments.

1.7.25 Debugging code in comments

Retain code used to debug a routine in comments for future use.

LAYOUT

Considerations of paper cost, filing system efficiency and amount of typing necessary should be ignored. Blank lines, spaces, lines and boxes of distinctive characters etc. should be used freely for readability.

1.8 Indent control structures

and match up opening and closing brackets etc. Indentation should be based on the control structure being implemented rather than on the languages feature being used (eg....... ELSE IF used to simulate ELSEIF (which does not exist in the language being used) should not be indented an additional level at each IF).

1.9 Separate control structures

with blank lines if this will aid legibility.

1.10 Make labels visible

by placing then on a line by themselves with a preceding blank line. If labels are used to implement a larger control structure the layout should however emphasise the control structure and not necessarily the individual labels.

1.11 Make branches visible

a blank line should normally be left following a (conditional or unconditional) transfer of control.

1.12 Align table entries

for legibility

1.13 Make comments visible

block comments should be separated from the surrounding code by preceding and following blank lines.

1.14 Make layout maintainable

For example, declarations of no more than one name on a line, which should be adhered to for reasons other than layout, also makes changing the code without destroying the layout easier.

1.15 Make layout consistent

The general principal of consistency applies to layout: if there are several ways of doing something, the same one should always be chosen.

Summary of Checklist

A.1 Modules

Module header comment

Configuration control

Module history

Module entry points

A.2 Routines

Routine header comment

Routine name

Parameter specification

* Registers and flags

Side-effects

Function

Result

A.3 Code

Block comment

Obscure code

Complicated Code

Conditional transfers of control

Unconditional transfers of control

Instructions with side-effects

Instructions used for side-effects

Critical regions of code

Preservation of registers or flags

Abnormal contents of registers or flags

Abnormal hardware state

Assumptions about timing

Assumptions about positioning

Critical code size

A.4 Declarations

Comment each field

Meaning of constants

Allowed values of constants

Relationships between constants

Abstract type of variables

What variables are used for

Where variables are used

A.5 Program Logic

Parameter ranges identified

Validity checks

Logic assumptions

Debugging code in comments

A.6 Layout

Indent control structures

Separate control structures

Make labels visible

Make branches visible

Make comments visible

Make layout maintainable

Make layout consistent

� "Procedural" means a conventional programming language in which "code", "data" and "flow of control" are easily identifiable features.

GFG IT-UK-99-SO 17/0.01
1 of 14
12 December 1997

