GFG Microsystems Limited
IT Department

[image: image1.png]

Information Technology Department

Code Checklist Standard
GFG Microsystems Limited
GFG IT Development
GFG IT
Code Checklist Standard
Standards
SO
0.02
GFG IT SET DOCUMENT “-UK-99-SO 18/0.02"
GFG IT-UK-99-SO 18/0.02

4 February 1998
You will be notified if any standard is revised; it is your responsibility to obtain up-to-date personal copies of standards and to destroy old ones.

DOCUMENT DISTRIBUTION

Document Identification

Document Ref:

Error! Bookmark not defined.-UK-99-SO 18/0.02

Authors Ref:

s018o002.DOC

Author:

Date:

4 February 1998

Dept/Section:

Error! Bookmark not defined.

Version:

0.02

Reason for Distribution

For Review

Status:

Draft

Distribution of Approved Version:

Reviewers
Department
Responsibilities
Comments Received

Issued By:

..

...

Copy No:

Issued To:

CONTENTS

61
INTRODUCTION

1.1
Purpose
6
1.2
Scope
6
1.3
Related Standards
6
1.4
Other Related Documents
6
1.5
Revision History
6
2
USE OF LANGUAGE
7
2.1
Use the good features of a language for example:
7
2.2
Avoid the bad features of a language
7
2.3
Use curious idioms clearly
7
2.4
Avoid semantic extensions
7
2.5
Go by the book, not the compiler
7
3
DECLARATIONS, NAMES AND CONSTANTS
9
3.1
Declarations
9
3.2
Names
9
3.3
Constants
10
4
CONTROL STRUCTURE
11
4.1
Structured Programming
11
4.2
Logical Structure
12
4.3
Selection Statements
13
4.4
Assignment Statements
14
5
EXPRESSIONS
16
5.1
Use Brackets to Clarify Expressions
16
5.2
Avoid Complex Logical Expressions
16
5.3
Avoid Double Negatives
16
5.4
Standardise UNLESS Tests
16
5.5
Avoid Temporary Variables
17
5.6
Say What You Mean
17
5.7
Let the Compiler do the Optimising
17
5.8
Let the Compiler do the Sums
17
5.9
Avoid Octal
17
5.10
Use an Appropriate Number Base
17
6
EFFICIENCY
18
6.1
Make It Work Before You Make It Faster.
18
6.2
Make It Clear Before You Make It Faster
18
6.3
Don't Waste Effort on Unnecessary Efficiency
18
6.4
Make It Efficient Enough
18
6.5
Don't Tweak Detailed Code For Efficiency because:-
18
6.6
Measure Before Improving Efficiency
18
6.7
Don’t Start With Easy Irrelevant Changes
18
7
ERROR DETECTION
20
7.1
Compiler Aids
20
7.2
Control Structures
20
7.3
Data Structures
21
7.4
Tracing
21
8
TELEGRAPH POLES
23
8.1
Hide a Data Structure in a Package
23
8.2
Make Data Structures Consistent
23
8.3
Use Dummy List/Array Entries
23
8.4
Check for “+1"s
24
8.5
Define “Last”, “Current”, “Next”
24
9
INPUT AND OUTPUT
25
9.1
Input
25
9.2
Output
27
A
SUMMARY OF CHECKLIST
28
A.1
Use of Language
28
A.2
Declarations, Names and Constants
28
A.3
Control Structure
28
A.4
Expressions
29
A.5
Efficiency
29
A.6
Error Detection
30
A.7
Telegraph Poles
30
A.8
Input and Output
31

1 INTRODUCTION

1.1 Purpose

The purpose of this standard is to promote the production of software of high quality and low overall cost. The main objectives addressed herein are:

-
Clarity

-
Consistency

-
Structure

This standard is not a tutorial and does not give justification or rationale for all the rules it contains. A suitable tutorial which does justify and illustrate many rules similar to those in this standard is “The Elements of Programming Style”, Kernighan and Plauger.

1.2 Scope

This standard applies to all programming activities in all languages for all machines.

It covers the coding activity at a level below that of program structure, typically below the level of modules and routines.

1.3 Related Standards

The reader should be familiar with the following documents that supplement the contents of this Standard.

[1]
Error! Bookmark not defined. UK
SO
17
Commenting and Layout Checklist

1.4 Other Related Documents

-
The Elements of Programming Style, Kernighan and Plauger.

1.5 Revision History

Version
Date
Author
Description
Sections Affected

0.02
98/02/04
GFG
Version change
Document re-saved

0.01
97/12/29
GFG
First draft
All, diagrams and forms to be added

USE OF LANGUAGE

1.6 Use the good features of a language for example:

a)
Don't use integers as switches if a logical (boolean) data type exists.

b) If a WHILE exists, use it instead of a mixture of IFs and GOTOs.

c) Use WHILE and UNTIL structures as appropriate.

1.7 Avoid the bad features of a language

(See the standard for the particular language, where one exists.)

For example:

a)
don't use FORTRAN assigned GOTO,

b)
don't use COBOL ALTER,

c)
don't use BCPL labels as variables.

1.8 Use curious idioms clearly

and comment them as necessary, as the next person to read the code may be less familiar with the details of the language.

1.9 Avoid semantic extensions

to “standard” languages, even if portability has been explicitly stated not to be a requirement. A reader who is less familiar with this dialect of the language will not understand them and will often not notice that they are being used, with disastrous consequences.

Example:

If the order of evaluation of part of an expression is "undefined" in the language standard but well-defined by your compiler do not write code that depends on this order of evaluation.

1.10 Go by the book, not the compiler

If the language manual doesn't say precisely what happens in certain circumstances, avoid writing such code. Do not run test cases “to see what the compiler does” and then rely on the results, because:

a)
the person reading the code has only the language manual to tell him what the language means,

b)
the compiler may be changed so that it still obeys the manual but your program no longer works,

c)
the program will not be portable,

d)
in any case, an optimising compiler will do different things with exactly the same code, depending on circumstances, so your program may stop working when a completely different part of it is changed.

DECLARATIONS, NAMES AND CONSTANTS

1.11 Declarations

1.11.1 Declare all names

even when some declaration may be optional (e.g. FORTRAN), if possible set the compiler switch which forbids "default declarations". Check cross-reference listings to ensure that no new default variables have been created by typing errors. Besides, as a comment defining each name is essential (see [1] Error! Bookmark not defined. UK-99-SO-17), where can this comment go if the declaration is missing?

1.11.2 Make declarations consistent

If there are two equivalent ways of doing something, always use the same one (e.g. do not use DECLARE on one line, DCL on the next; do not declare one (assembler) variable as WORD 1 and another as BYTE 2 if they are both used in the same way).

1.11.3 Group related declarations

The criteria for grouping will depend on the language and the rules for program structuring. It should however be easy to find and read the declarations associated with a data structure without having to scan many unrelated declarations.

1.11.4 Allow enough space for declarations

This normally means declaring no more than one name per line, in order to leave room for the necessary comments. Unrelated declarations should never be combined (e.g. never write REAL TIME, DIAM, XCOORD).

1.12 Names

In some situations the naming conventions will be dictated by program structure requirements (e.g. external names may have to be derived from the Error! Bookmark not defined. number for the component). These rules should be used where such considerations do not apply.

1.12.1 Make names meaningful

to the human reader. This rule covers quite a lot of ground:

a)
variable, constant and routine names should be mnemonic,

b)
related objects should have related names,

c)
labels should normally be named to aid location (e.g. in assembler routine. DIV, labels are DIV10, DIV20, … ; in BCPL routine EXPR the error label could be called EXPR.ERROR and this is located by the program-wide convention that "ERROR labels are near the end of the routines").

1.12.2 Make names consistent

so that the user can deduce what a name means (what data structure is it part of? - is it a constant or a routine?) without necessarily having to look up the declaration.

For example:

String (str) making up a postal address

strPremise,
strThoroughfare,
strLocality,
strTown,
strCounty,
strPostalCode
strCountry

Various number assignments:-

intCounter
integer used in a loop

lngRecCount
long used to count records in a database table

booDone
boolean to indicate that a condition has been satisfied

1.13 Constants

Most languages allow the declaration of names to represent constants (in one form or another; sometimes a simple macro replacement mechanism is used). Where this facility is missing from a language it is usually possible to declare a variable initialised with the value of the constant.

1.13.1 Name constants

Almost all constants should be names, so the actual value appears only once, in the declaration. See [1] Error! Bookmark not defined. UK-99-SO-17 for a description of the comments that are required for constant declarations, and the rationale for the use of such declarations. (Any program in which "27" appears once (not in a constant declaration) is dubious; if it appears twice or more the program probably has bugs now and certainly will acquire bugs during maintenance.)
CONTROL STRUCTURE

1.14 Structured Programming

It is a well-known principle of “structured programming” that all programs can be written using properly nested combinations of three basic control structures: sequence (one statement follows another), selection (IF-THEN-ELSE-IF, UNLESS, CASE) and repetition (FOR-TO-BY..., WHILE, UNTIL, REPEAT, etc). Theoretically, simply banning the use of GOTO forces all programs to take on this form. However, this is not necessarily:-

practical
not all languages contain the basic control structures),

adequate
very badly structured programs with many random nested selections can still be written

desirable
some algorithms, e.g. finite state machine, may best be implemented in terms of GOTOs even in high level languages

Thus while the first rule in this chapter states that the structured programming principle is to be followed in general, further rules applicable to more specific circumstances are also given.

1.14.1 Write structured programs

using only properly nested combinations of sequence, selection and repetition (but see 4.1 above).

1.14.2 Avoid GOTO

except where it is used in a consistent, disciplined and commented way to implement one of the basic control structures (e.g. error handling in Visual Basic) or some other control structure that is not available in the language being used. In low-level languages (e.g. assembler, FORTRAN) considerable care must be taken when constructing larger control structures from IFs and GOTOs.

1.14.3 Use synthetic control structures

as described above in 4.1 and 4.1.2.

1.14.4 Make synthetic controls structures consistent

There is usually a choice of several more or less equivalent ways of implementing a synthetic control structure: where possible, always use the same one.

1.14.5 Document synthetic control structures

so that the maintenance programmer can recognise them: he cannot avoid destroying the structure if he doesn't know what it is.

1.14.6 Make synthetic control structures clear

and in particular, do not “optimise” them for “efficiency” (or laziness) (e.g. by leaving out “redundant” labels and branches from a CASE statement: there will always be at least one jump to a label on the next instruction).

1.15 Logical Structure

Even when the above structured programming rules (4.1) are followed it is possible to create very badly structured code by ignoring the logical structure of the problem. Such code is often characterised by many small selections (IFs) with no overall pattern, several “state variables” (flags, switches counters etc) and many assignments to them. Assigment statements are no less unstructured than GOTOS: GOTOs make it difficult to understand the flow of control, and assignments make it difficult to understand the flow of data.

1.15.1 Structure the code to match the data

If a piece of code is to process a data structure it is often the case that the best code structure matches the data structure. This follows because clearly identifiable sections of code match parts of the data structure, and the relationships between the sections of code match the relationships within the data structure.

Example:

when processing free-format input, in which a new line does not necessarily mark a logical break in the data, the code structure should be something like “read a data item (this might include reading a new line of input)” rather than “read a line and process any data items you find in it (the following 17 variables describe the first part of the data item carried over from the last line)”.

1.15.2 Structure the code to match the problem

As for 4.2.1, the program should know what it is doing from where control is, not from an analysis of a collection of flags and state variables. Eliminate state variables and the associated assigment statements and tests, even at the cost of duplicating code sequences (duplicate code can then be removed by adding properly structured loops or subroutines).

1.15.3 Use table driven code

In complete contrast to the above approach, it is sometimes appropriate to use code that depends entirely on state variables, but in this case (typically) a single state variable addresses a table which defines the computation. In fact, the bulk of the programming here is usually concentrated in the table, not the code. The table may be considered to be the "active " part of the algorithm, acting on the "passive" code. With a table-driven algorithm, the program knows what it is doing from where control is in the table.

1.16 Selection Statements

Simple selection statements (IF-THEN, IF-THEN-ELSE-IF etc) are one of the basic structured programming constructs (see 4.1) but undisciplined use can still lead to messy, incomprehensible, unreliable programs. Rule 4.1.2 (no GOTOs) removes a lot of the problems with IF statements, but some remain. In particular, it is rarely necessary to program an explicit decision tree consisting of multiple nests of IFs with no obvious pattern.

1.16.1 Use CASE statements

if they are available: if not a synthetic CASE statement built from IFs in a disciplined way (see 4.1) is easier to construct and test, more comprehensible and easier to maintain than a random-looking decision tree. The synthetic CASE statement may well be less "efficient" (e.g. more tests are made than are absolutely essential) but a good structure is worth quite a lot of "wasted" time (see also 6).

1.16.2 Use the ELSEIF option

of the IF statement (if available) when a set of tests is to be performed in sequence. If it is necessary to synthesize an IF-THEN-ELSEIF-THEN-ELSEIF-THEN-ENDIF structure using a simple IF-THEN-ELSE, then the layout of the code should reflect the structure being implemented (a comb shape) rather than the structure you are forced to use in this implementation (multiple nested IFs) i.e. do not indent further for each IF.

1.16.3 Separate IF tests

If two (nearly) independent conditions are being tested it may be clearer to write the tests sequentially rather than nesting them. Again, this may result in the odd "redundant" test: see 4.1.3.

1.16.4 Leave IFs and CASEs in one place

In the structured programming model, each basic element has one entrance (at the top) and one exit (at the bottom). The GOTOs used to leave a synthetic IF or CASE should all meet at the end of the selection statement. Leaving an IF or CASE with a GOTO should be a very rare action with adequate justification and clear commenting.

1.16.5 Enter IFs and CASEs in one place

 (See 4.3.4) In some languages (and when the selection statement is synthetic) it is possible to jump into a branch of a selection from outside or from another branch (e.g. jumping from one branch of a CASE to another). This should be a very rare action with adequate justification and clear commenting.

1.16.6 Always code a DEFAULT branch

 (or OTHERS or OUT or whatever) in a CASE statement (whether a basic language statement or synthetic) even if this branch “can never be taken”. One day it will be taken and an error trap here is completely free (usually) in run-time when no error occurs. See also 7.

1.17 Assignment Statements

Assignment statements (and assembler STORE instructions) are very much like GOTO statements in many respects. They have non-local effects: the new value stored can affect parts of the program a long way from the assignment. They make understanding and reading a program difficult: just as many GOTOs make it difficult to understand flow of control, so assignments make it difficult to understand flow of data. GOTO statements have many different uses but (unless the rules in this chapter are followed) they all look the same so the actual meaning is obscure: the same applies to assignments.

These properties of assignment statements have similar results, leading to problems when writing, reading, debugging and modifying programs. The solution to these problems is similar to that chosen for GOTO statements: the assignment statement is to be avoided as much as possible except where used in a consistent, disciplined and commented way to implement a larger construction.

 (An example is the construction of a loop (in a language not having one) from IFs, GOTOs and (typically) two assignment statements. The functions of these statements (e.g. COUNT:=0, COUNT:=COUNT+1) are different: one is initialising a data structure, the other is an increment. Note that neither is the commonly-taught “main purpose” of an assignment statement, namely to evaluate an arithmetic expression and store the result somewhere useful. When writing in assembler one would typically use CLEAR and INC instructions here rather than STORE, and when writing in a high level language one would expect the compiler to deduce that these assignments are not really assignments and generate CLEAR and INC instructions accordingly.)

1.17.1 Use loops instead of assignments

if the structure you are implementing can sensibly be transformed into a loop statement in the language being used.

1.17.2 Use recursion instead of assignments

and do not "flatten" the recursion for "efficiency" reasons without following the rules in 6. (As a trivial example, the number of elements in a list can be counted "flat" using three assignments and two temporary variables while the same job can be done recursively using none of either. This is not a good example as the efficiency loss (in terms of store used) in doing this job recursively is likely to matter.)

1.17.3 Use co-routines instead of assignments

if your language provides them: if not they can sometimes be constructed using existing language features. A typical candidate for a co-routine is a routine which needs to maintain a number of “own” variables to remember what state it is in between invocations.

1.17.4 Package data structures

rather than acting on them with assignments all over the place. Any repeated assignment or set of assignments (e.g. CH := BUFFER (FRONT); FRONT:=(FRONT+1) MOD LENGTH) is likely to be an indication that a data structure and the operations on it should be made into a package with a clean procedural interface.

1.17.5 Use conditional expressions

to reduce the number of assignments and make the code clearer:

for example

x:=
IF c THEN y
 ELSE z
FI;

is often a lot clearer than:

IF c
THEN x:=y
ELSE x:=z
FI;

EXPRESSIONS

This section covers the writing of expressions: most of the points are aimed at logical and integer expressions as the way in which floating point and other approximate expressions are coded will depend on numerical analysis considerations which are outside the scope of this standard.

1.18 Use Brackets to Clarify Expressions

for the following reasons:

a)
if you have to look up the operator priorities, don't: use brackets instead; what chance does the reader have otherwise? (He will typically be even less familiar with the language that you are).

b)
some languages have very obscure rules which nobody can be expected to remember (e.g. the relative priorities of "=" and "<<" depending on the order in which they occur).

c)
some languages have ambiguous or undefined or intrinsically misleading operator priority rules (what do “-A**B”, “A**B**C”, “A=B&C” mean? Wouldn't “(-A)**B”,, “(A**B)**C”, “(A=B)&C” be clearer even if the originals happened to be correct?).

d)
a longer expression, particularly when neatly laid out, indented, spaced etc. will be parsed “correctly” by the human reader even if it is actually wrong: these errors are expensive to find because showing the code to other people often doesn't help; it is not uncommon for someone to miss a priority error in an expression even when he strongly suspects that there is one.

e)
when the order in which an expression is to be evaluated is important this should be emphasized by using brackets, even if they are strictly redundant: the reader of an unfamiliar language is even less likely to have memorised the order evaluation rules than the operator priority rules.

1.19 Avoid Complex Logical Expressions

as a long string of ANDS, ORs, NOTs and brackets with no obvious pattern is unreadable. Similar considerations apply as for selection statements (see 4.3.1, 4.3.2, 4.3.3): separate out the different jobs being done in the expression, regularise the pattern of tests (even if this results in “efficiency loss” due to a condition being tested twice). Do not factor out the expression for “efficiency reasons” if the result is so far removed from the logical structure of the problem as to be unrecognisable.

1.20 Avoid Double Negatives

like “UNLESS A!=B” unless they are the clearest and most logical way to represent the problem being solved.

1.21 Standardise UNLESS Tests

if your language does not have an UNLESS statement. Do not write "IF !(A=B)" half the time and “IF A!=B” the other half if both would be more naturally written as UNLESS statements: choose one form (unless a lower level language standard prescribes the choice for you) and use it consistently. If (for example) you choose the first form then the notional "UNLESS A<B" should be transcribed into the real language as "IF !(A<B)" and not as "IF A>=B".

1.22 Avoid Temporary Variables

for holding intermediate values of expressions; that way you avoid the risks associated with such variables (failure to initialise, re-use elsewhere) and the assignment statements (see 4.4). In addition the complete expression written in one place is often easier to understand (and is probably more efficient, not less: the compiler is better than you are at spotting common sub-expressions, allocating store for intermediate results, etc).

1.23 Say What You Mean

and worry about the human reader, not the compiler. “X**3” is clearer than "X*X*X" (and the compiler is in a better position to choose the most efficient calculation for itself).

1.24 Let the Compiler do the Optimising

and retain clarity for the human reader. The chances are that you'll get the optimisation wrong anyway: if you mean "X*4096" and write "X<<12" you have lost clarity and gained no efficiency, as:

a)
if the shift is faster than the multiplication then a shift would be compiled anyway by any sensible compiler,

b)
if the shift happens to be slower than the multiplication the compiler may choose to reverse your “optimisation” and compile a multiplication anyway!

1.25 Let the Compiler do the Sums

If you mean “length+1+1” (because the two extra cells are for two separate purposes) then don't write “length+2”: you confuse the reader, who has to work out where the “2” came from, and gain nothing, as the addition would have been done at compile time anyway. If your language requires contortions such as ‘A’<<8+’B’ to pack two characters into a work, then write it that way, not as 12372 (or whatever the answer is)!

1.26 Avoid Octal

Few people understand both Octal and hex, so one form should be preferred. Hex is most suited to modern machines with 8, 16, 32 bit words: octal belonged to the days when many machines had 12 or 18 bit words.

1.27 Use an Appropriate Number Base

with e.g. masks in hex or binary, the date in decimal.

EFFICIENCY

Programs should be designed to meet the required level of performance. They should then be written with clarity and correctness as the main objective, following this and related standards.

1.28 Make It Work Before You Make It Faster.

Any program can be made as fast and small as you like if it hasn't got to produce the right answers.

1.29 Make It Clear Before You Make It Faster

Follow the programming standards: do not make exceptions “for efficiency” until you have proved that this is essential (see 6.3,6.4,6.6,6.7).

1.30 Don't Waste Effort on Unnecessary Efficiency

If a program is small enough and fast enough to meet its specification then no more “efficiency” is needed and no time or effort should be spent “improving” it.

If it becomes clear that a program could be made very considerably more efficient then a brief report setting out the costs and benefits of such improvement may be submitted to management, as long as the preparation of such a report does not consume significant unbudgeted resources.

1.31 Make It Efficient Enough

If the performance of a program does not reach the levels required in the specification then it must be improved until it does meet the specification or until it is believed that the specification is unreasonable.

1.32 Don't Tweak Detailed Code For Efficiency because:-

a)
this approach is far less likely to achieve the desired performance than a higher-level improvement to the algorithm and/or data structure,

b)
the resulting “tweaked” code tends to lose the clean structure and comprehensibility that was achieved by following the rest of the standards, making the whole exercise a waste of time.

1.33 Measure Before Improving Efficiency

as you will probably guess wrongly as to the best place to start. Measurements should preferably be made in the real-life parameters that need improving (e.g. real time or CPU time) rather than in parameters internal to the program which may not reflect true costs (e.g. counting comparisons ignores housekeeping costs; reducing the number of disc accesses can actually increase the run time of a program).

1.34 Don’t Start With Easy Irrelevant Changes

The value of improving a sort to take 0.2 sec instead of 15 sec is dubious if the whole program still takes 10 min (except (unlikely, but possible in e.g. a real-time system with fixed slots) where the specification requires the program to take less than 9 min 50 sec and no further improvement is necessary).

ERROR DETECTION

One of the objectives of programming standards is to reduce the number of errors. However it is not possible to eliminate all errors and some will survive until the program is tested, and some will survive until the program is in production. This section give rules which are designed to aid the early detection and diagnosis of errors. When they are followed there should be little need to fall back on prehistoric debugging aids like dumps and assembler-level debugging tools (even for IBM assembler programs!).
1.35 Compiler Aids

Compilers and assemblers often contain switches for generating checking code to be executed at runtime or for performing extra checks at compile time. Other available features include generating code to compile profiling information etc. which can be printed by a post-mortem routine on failure of the program. Not all the features are useful, but those that are should, in general, be used.

1.35.1 Enable subscript checking

and do not disable it when the program goes into production!

1.35.2 Enable arithmetic overflow checking

and do not disable it when the program goes into production!

1.35.3 Enable store overflow checking

(e.g. stack checking) and do not disable it when the program goes into production!

1.35.4 Enable profiling

as long as it is done on a reasonable basis: counting each entry to each routine is reasonable, counting each execution of each statement should be unnecessary and may be too expensive.

1.35.5 Disable statement tracing

If all other attempts to debug your program have failed, rewrite it properly.

1.35.6 Disable dumps

If all other attempts to debug your program have failed, rewrite it properly.

1.36 Control Structures

At any point in a program where “control can never reach here”, don't worry, it will one day.

1.36.1 Always code a DEFAULT branch

(or OTHERS or OUT or whatever) in a CASE statement; this branch may contain a call to an error routine. If the language has no default branch, test the control variable before the CASE statement.

1.36.2 Always trap impossible control flow

e.g. place a call to an error routine after an “infinite” loop or a complex control structure which control “never” leaves a straight line. Trap returns from routine that “never” return (with the possible exception of the error routine itself!).

1.37 Data Structures

See also 9, INTRODUCTION
1.37.1 Check parameters for validity

The degree of checking will vary depending on circumstances: for routine calls internal to a particular package little checking may be necessary while for a routine call that enters a package from a distant program module very thorough parameter checking may be necessary.

1.37.2 Check limits exactly

When you know there is room for 1000 items, don't check “<=995” “to be on the safe side”; this is highly confusing as well as being wasteful and wrong. Find out what the limit is and why, and choose the one of the six tests that makes most sense (e.g. if the actual amount of space is 1001 items and the index of the last item added is being checked to see if there is any room left, “<1001” makes both points clear while “<=1000” does neither).

1.37.3 State assumptions about limits

If limit tests (as described in 7.3.2) need to leave some room (e.g. a stack overflow checking routine must leave room for the error routine's stack) the check should (as for 7.3.2) be calculated exactly and the assumptions on which it is based should be commented explicitly.

1.38 Tracing

Compiler-generated tracing information is usually voluminous and very difficult to work with. Useful trace output must normally be programmed explicitly.

1.38.1 Make tracing switchable

as a run-time option: don't edit it in during testing and delete it when the program “works”, make it an integral part of the design.

1.38.2 Don't delete tracing

from the program when it “works”: you will need it later to find the rest of the bugs. Don't worry about efficiency: tracing code is subject to the same rules (see 6) as the rest of the code.

1.38.3 Don't trace too little

or you won't be able to find the bugs! Effort spent designing and coding tracing is a much better investment than effort spend reading dumps (see 7.1.6).

1.38.4 Don't trace too much

or the tracing information will be little more help than a dump. If necessary different levels of tracing output can be controlled by a set of run-time switches.

TELEGRAPH POLES

If there are n telegraph poles, there are n-l, n or n+1 gaps between them depending on how you look at it. What happens when there are 0 or 1 poles? Does the nth item refer to the nth pole, the gap to the left of the nth pole, the gap to the right of the nth pole, the nth gap, or what? Is the “first” pole/gap number 0 or 1 and is it called the “first” or the “zeroth”? If the last pole is number n are there n or n+1 poles? if there are n gaps is the last one the nth or the (n-1)th?

When the rules in the rest of this standard and in related standards have been applied so as to eliminate most programming errors, a large proportion of remaining errors in most types of program is made up of "off by one" or "telegraph pole" errors. Typically this involves running one element off the end of an array, getting two indices out of step, losing a character, using the current symbol twice, executing a loop once when it should be executed zero times, retrieving an element of a data structure adjacent to the one wanted, etc., etc. This problem does not appear to have received the attention it deserves in the literature and no standard set of solutions appears to be available.

The rules given in this section, while they should make a significant contribution towards reducing the number of telegraph pole bugs, are not a complete solution and are not as well proven as other rules in this standard. The main way to avoid telegraph pole bugs is to be constantly alert for them.

1.39 Hide a Data Structure in a Package

so all accesses to it have to be made through a small set of routine calls. This means (e.g.) that the index or pointer is internal to the package thus eliminating “does it point at the pole or the gap” errors outside the package. This approach will also typically eliminate the need for a large number of assignment statements which is a Good Thing in its own right (see 4.4).

1.40 Make Data Structures Consistent

If you have two lists or two buffers in the same program, treat them the same way (don't index the nth pole in one and the (n-l)th gap in the other!): the maintenance programmer, having worked out and understood one of them is likely to assume that the other behaves in the same way whether it does or not. Additionally, if you make the structures behave the same way, you only need to write one package to handle both structures.

1.41 Use Dummy List/Array Entries

to eliminate the need for special case code to handle "edge effects”. Such special case code is typically larger and more error-prone than the main code for the normal case. Examples: make sure a list is always at least 1 element long by putting a dummy entry at the end; almost all chess programs work on a 10 x 10 board: it is a lot easier to choose values for the dummy squares so that the normal code works clearly than to program bound checks every single time the "adjacent square" needs to be looked at.

1.42 Check for “+1"s

Any program which contains a lot of “+1”s is suspicious; any program that contains a mixture of “+1”s, “-1”s, indices used unmodified, and even “+2”S is almost certainly full of telegraph pole bugs. Unfortunately, this rule does not tell you how to avoid writing bugs, it only tells you where they will be once you have written the code. Roughly, any data structure that needs more than one "+1" to manipulate is probably wrongly designed.

1.43 Define “Last”, “Current”, “Next”

 for each data structure (the meanings should be comparable, see 8.2), document them clearly and use them consistently. Where possible reduce the number of items that need to be considered at once: if you only ever deal with "current" items you will avoid confusion between "last" and "current", and "current" and "next".

INPUT AND OUTPUT

 Input and output formats should normally be defined by a specification and thus do not need to be covered by programming standards. However, in the real world details of input and output formats, particularly those not seen by the normal users of the system (e.g. configuration files), are often left to the programmer. This section gives some rules to be followed in these circumstances but is not intended to be a complete standard for I/0 design. As the functions of input and output files vary considerably not all these rules will be applicable to all files.

1.44 Input

An input format is essentially a programming language, although often a very simple one. Do not design an input format that you would complain about if you had to program in it! These rules are not adequate guidelines for the design of a complex programming language or input format: if such a format is needed but is not defined by specifications a management decision on how to proceed should be sought.

1.44.1 Document input formats

as well as a programming language should be documented. The documentation should be sufficiently thorough that it is never necessary to try something out on a machine to answer a question about the input format.

1.44.2 Allow comments in input

even when the input is machine generated and untouched by human hand; the person or program generating the input may wish to add human-readable identification of the input file, description of how the input was produced, what output is expected etc. just as for any other programming language. A normally machine-generated input format may have to be hand-written in order to produce test data.

1.44.3 Allow free format input

allow the input to contain blank lines and spaces, don't insist on items appearing at particular points on a line or even on particular lines; don't insist on a rigid system with silly constructions using lots of brackets, commas and quotes, etc.

1.44.4 Make input mnemonic

using English (or whatever language is relevant) words rather than codes or obscure abbreviations.

1.44.5 Allow lower case

letters with the same meaning as upper case letters unless it is essential that lower case letters take some other meaning. NEVER simply ban either case.

1.44.6 Make input consistent

so that there are no surprises for the user and he can make intelligent guesses as to how to proceed without necessarily having to refer to a manual for every parameter of every command. Use the same parameter format for each command; use the same design for all input formats in a system.

1.44.7 Allow sensible defaults

and do not require the user to enter every parameter every time. If necessary, do not apply static defaults but calculate appropriate defaults from the parameters the user has entered.

1.44.8 Allow synonyms

for commands, keywords, etc. in order to cope with:

a)
differing current usage between potential users of the system,

b)
optional spellings (DISC, DISK),

c)
abbreviations - the full form of a word should always be acceptable as it is easier to remember than an abbreviation.

1.44.9 Detect end of file

without insisting that the user give warning of it: the user should never be required to count data items (why should a person count things when a computer is available?) and in most circumstances should not be required to write an "END" statement etc: if the program can detect end-of-file in order to print the “missing END statement” message then it can detect end-of-file in order to terminate the data.

1.44.10 Avoid special case semantics

where additional syntax is the correct answer: if “CLEAR 3” means “delete item 3” do not use “CLEAR 0” for “delete all items”; use “CLEAR” or “CLEAR ALL”. (COBOL level numbers are a very bad example of hidden special case semantics.)

1.44.11 Check input for validity

No input, no matter how crazy or from how “secure” a source, should be capable of breaking the program. The absolute minimum action to be taken by the program on receipt of invalid input is an error indication.

1.44.12 Produce helpful error messages

relating to invalid input: describe the location of the error, the reason for the error (in English, not code numbers), and if necessary what action the user should take to correct the condition. It is often helpful to reflect the erroneous input as interpreted by the program: it is little help saying "illegal character" if the cause is an invisible character introduced by a line error; in this case the hex value and line position of the character could be included in the message.

1.44.13 Produce polite error messages

particularly if the problem is with the program, (e.g. run out of store, internal error detected) and not the fault of the user (who may not be interested in computers anyway). It costs little to print "SORRY" instead of "ERROR".

1.45 Output

1.45.1 Make output readable

with appropriate use of spaces, blank lines, neat columns, English words (instead of mnemonic codes or obscure abbreviations), upper and lower case, etc.

1.45.2 Identify output

by including, as appropriate, time, date, input file names, output file names, run name, reflection of control options for this run, name and version of program producing the output.

1.45.3 Give the user feedback

to increase his confidence that the program actually did what he wanted: files created, deleted, store used, time used, whether tape or database was updated, etc.

1.45.4 Label output

what use is a column of figures with no heading?

1.45.5 Produce helpful error messages

(see 9.1.12).

1.45.6 Produce polite error messages

(see 9.1.13).

SUMMARY OF CHECKLIST

A.1 Use of Language

A.1.1 Use the good features of a language

A.1.2 Avoid the bad features of a language

A.1.3 Use curious idioms clearly

A.1.4 Avoid semantic extensions

A.1.5 Go by the book, not the compiler

A.2 Declarations, Names and Constants

A.2.1 Declarations

A.2.1.1 Declare all names

A.2.1.2 Make declarations consistent

A.2.1.3 Group related declarations

A.2.1.4 Allow enough space for declarations

A.2.2 Names

A.2.2.1 Make names meaningful

A.2.2.2 Make names consistent

A.2.3 Constants

A.2.3.1 Name constants

A.3 Control Structure

A.3.1 Structured programming

A.3.1.1 Write structured programs

A.3.1.2 Avoid GOTO

A.3.1.3 Use synthetic control structures

A.3.1.4 Make synthetic control structures consistent

A.3.1.5 Document synthetic control structures

A.3.1.6 Make synthetic control structures clear

A.3.2 Logical Structure

A.3.2.1 Structure the code to match the data

A.3.2.2 Structure the code the match the problem

A.3.2.3 Use table-driven code

A.3.3 Selection Statements

A.3.3.1 Use CASE statements

A.3.3.2 Use the ELSEIF option

A.3.3.3 Separate IF tests

A.3.3.4 Leave IFs and CASEs in one place

A.3.3.5 Enter IFs and CASEs in one place

A.3.3.6 Always code a DEFAULT branch

A.3.4 Assignment Statements

A.3.4.1 Use loops instead of assignments

A.3.4.2 Use recursion instead of assignments

A.3.4.3 Use co-routines instead of assignments

A.3.4.4 Package data structures

A.3.4.5 Use conditional expressions

A.4 Expressions

A.4.1 Use brackets to clarify expressions

A.4.2 Avoid complex logical expressions

A.4.3 Avoid double negatives

A.4.4 Standardise UNLESS tests

A.4.5 Avoid temporary variables

A.4.6 Say what you mean

A.4.7 Let the compiler do the optimising

A.4.8 Let the compiler do the sums

A.4.9 Avoid Octal

A.4.10 Use an appropriate number base

A.5 Efficiency

A.5.1 Make it work before you make it faster

A.5.2 Make it clear before you make it faster

A.5.3 Don't waste effort on unnecessary efficiency

A.5.4 Make it efficient enough

A.5.5 Don't tweak detailed code for efficiency

A.5.6 Measure before improving efficiency

A.5.7 Don't start with easy irrelevant changes

A.6 Error Detection

A.6.1 Compiler Aids

A.6.1.1 Enable subscript checking

A.6.1.2 Enable arithmetic overflow checking

A.6.1.3 Enable store overflow checking

A.6.1.4 Enable profiling

A.6.1.5 Disable statement tracing

A.6.1.6 Disable dumps

A.6.2 Control Structures

A.6.2.1 Always code a DEFAULT branch

A.6.2.2 Always trap impossible control flow

A.6.3 Data Structures

A.6.3.1 Check parameters for validity

A.6.3.2 Check limits exactly

A.6.3.3 State assumptions about limits

A.6.4 Tracing

A.6.4.1 Make tracing switchable

A.6.4.2 Don't delete tracing

A.6.4.3 Don't trace too little

A.6.4.4 Don't trace too much

A.7 Telegraph Poles

A.7.1 Hide a data structure in a package

A.7.2 Make data structures consistent

A.7.3 Use dummy list/array entries

A.7.4 Check for "+1"s

A.7.5 Define "last". “current”, “next”

A.8 Input and Output

A.8.1 Input

A.8.1.1 Document input formats

A.8.1.2 Allow comments in input

A.8.1.3 Allow free format input

A.8.1.4 make input mnemonic

A.8.1.5 Allow lower case

A.8.1.6 Make input consistent

A.8.1.7 Allow sensible defaults

A.8.1.8 Allow synonyms

A.8.1.9 Detect end of file

A.8.1.10 Avoid special case semantics

A.8.1.11 Check input for validity

A.8.1.12 Produce helpful error messages

A.8.1.13 Produce polite error messages

A.8.2 Output

A.8.2.1 Make output readable

A.8.2.2 Identify output

A.8.2.3 Give the user feedback

A.8.2.4 Label output

A.8.2.5 Produce helpful error messages

A.8.2.6 Produce polite error messages

GFG IT-UK-99-SO 18/0.02
1 of 31
4 February 1998

