GFG Microsystems Limited
IT Department

[image: image1.png]

Information Technology Department

A Windows Style Guide For Visual Basic
GFG Microsystems Limited
GFG IT Development
GFG IT
A Windows Style Guide For Visual Basic
Standards
9999
0.02
GFG IT SET DOCUMENT “-UK-99-SO 30/0.02"
GFG IT-UK-99-SO 30/0.02

16 March 1998
You will be notified if any standard is revised; it is your responsibility to obtain up-to-date personal copies of standards and to destroy old ones.

DOCUMENT DISTRIBUTION

Document Identification

Document Ref:

GFG IT-UK-99-SO 30/0.02

Authors Ref:

s030o002

Author:

Date:

16 March 1998

Dept/Section:

GFG IT Development

Version:

0.02

Reason for Distribution

For Review

Status:

Draft

Distribution of Approved Version:

Reviewers
Department
Responsibilities
Comments Received

Issued By:

...

...

Copy No:

Issued To:

CONTENTS

41
INTRODUCTION

1.1
Purpose
4
1.2
Scope
4
1.3
Audience
4
1.4
References
4
1.5
Revision History
4
2
Method
5
2.1
Environment
5
2.2
Alignment
7
2.3
Layout principles
11
2.4
Command buttons
14
2.5
Font information
16
2.6
Summary of settings
18
3
Rationale
19
3.1
Introduction
19
3.2
Basic design principles
19
4
Other Windows toolSets
21
4.1
Access
21
4.2
Oracle
21

1 INTRODUCTION

1.1 Purpose

The purpose of this document is to provide guidance when developing user interfaces using Visual Basic and Access.

1.2 Scope

This document covers the design of applications, not the underline code.

1.3 Audience

This document is intended for all members of GFG IT Development staff.
1.4 References

[1]
Microsoft Corporation

1992
Microsoft Visual Basic programming system for Windows: Programmer's Guide, Language Reference, and Professional Features

[2]

Common User Access Guidelines

[3]
Microsoft Press, Redmond WA

1992
The Windows Interface - an application design guide

[4]

CNA User Interface Style Guide

1.5 Revision History

Version
Date
Author
Description
Sections Affected

0.01
98/03/26
SC
First draft

0.02
98/03/27
GFG
Diagrams included

2 Method

2.1 Environment

2.1.1 Colours

It is recommended to:

·
Target development at 800x600 resolution and the 256 standard Windows colours, to ensure portability, unless the application is known to be specified at a higher or lower level.

The Windows 95/NT 4 taskbar can be changed to a pop-up if required, but where ever possible space for the task bar should be allowed.

·
Use light grey for the background colour, white for highlights and dark grey for shading. See the grid in section 2.6.1 for the hexadecimal numbers assigned each colour.

·
Keep other colour to a minimum. Use only to draw attention to warning messages such as used in dialogue boxes, or as an aid to communicating something of importance to the user.
·
Use pale blue (cyan) in text boxes when needed to emphasise mandatory data fields.

·
DO NOT use visual textures (e.g., marble or granite), as backgrounds.

·
For more advanced graphical options (e.g. a different palette, using the 10 shades of grey of UNIX icons) consult the appropriate manuals.

2.1.2 Components

The main part of the programming environment for Visual Basic includes:

·
Forms

 ·
The Toolbox of objects which may be drawn on the forms the Properties window (for setting the property variables of each object)

·
The Project window, which lists the forms and code modules within the project

This Style Guide does not replace the manuals that come with Visual Basic. The user should familiarise themselves with the functions of these components, by reference to the manuals. [1]

2.1.3 Settings

Define the grid settings (which are located under Options/Environment) using the following:

·
Grid height - 60 twips
, or 1 mm.

·
Grid width - 45 twips, or 0.75 mm.

·
Work with the grid snap ON as much as possible.

·
All forms should be a multiple of 45 twips (i.e., whole grid units
) wide.
·
All text should be mixed-case, rather than upper-case.

2.1.4 Create an alignment form

To create a consistent layout across different applications, use an alignment guide, which is based on the size of an 8pt font cell (the minimum height taken up by a text string). This can then be incorporated into any Visual Basic projects.

[image: image2.png]Mba 5
Mfing
Mhg
Mhg
Mhg
Mhg
Mhg
Mhg.
Mhg
Mhg
Mhg
Mha
Miha
Mhg
Mhg

Mhg
Mhg
Mhg
Mhg
Mhg

Figure 1 - How to compose an alignment form

Open a new form, set the grid as above, and create an alignment form (see Figure 1) as follows:
·
Type a column of character strings (for example, 'Mhg', to show full height characters, and a decender).

·
Use MS Sans Serif 8 pt bold, and have AutoSize = True for each string (i.e., Height = 195). This sizes down to a font cell, and hence 195 twips is the height of each font cell. (Turning the BackColour of the form to something other than white will help illustrate this.)

·
Arrange them so that there is one row of dots visible between each font cell.
·
Add a horizontal line and a textbox (Height = 285) to the alignment form, both of which may be moved about to assist when aligning objects on the interface being designed. The top of any text box aligns with the dots between font cells.

2.2 Alignment

2.2.1 Placing and aligning components

·
Draw two lines on the form being worked on, a vertical and a horizontal one, to assist alignment. Delete them when the form is complete.
·
Don't put any component closer than 2 grid units from either side, as illustrated in Figure 2.

·
Leave a spacing of at least 6 grid units horizontally between columns (Figure 2).

·
Place objects directly on form, so that grid is visible for alignment. If panels are, when needed for programming purposes to group related items together, set the BackStyle to ssOpaque to reveal the grid.

[image: image3.png]Panel heading
Name

I Store latest

I~ Store all

11D number

I Plain text

i
I Spreadshoet . stamp |
L .

i~ Heading ?r‘ Tab separated
Enter comment

[s
Ok Lancel

Comment

Screen? :

A i

P

2 grid units 6 grid units

Figure 2 - Showing correct horizontal alignment, vertical alignment and minimum spacing.

[image: image4.png]Name Edit Help

| Priority ___Importance Sensitivity
[Text sting | [Teststing 177 [Tent string il
Reply by

2] [Tert sting

™ save copy

Authorised by
[Text sting 1

EE| A

o Cancel | Screen3

Figure 3 - Illustrating the use of an alignment form for placing objects correctly on a form.

·
Align the bottom edge of a tide bar or menu bar, to the vertical centre of a font cell. Horizontally align the font cells of all text, with the alignment form and across the page. (Figure 3)

·
Separators are made up of two lines. The top one (dark grey) is horizontally aligned with the vertical centre of a font cell. The white one is placed immediately below it

[image: image5.png]Narne Edit

Priosity Importance
[Tent sting [Tent sting | [Testing

Text stiing

A/

Authorised by {Expites by

Tent sting 1 ‘ ?]—\umu/nn

P —— o w0
Not

-
r
l‘

0K Lancel Screend

Receipt

Figure 4 - An example of poor layout: poor alignment across the form, gaps by the scroll bars, bevels too far apart, buttons too large and poor division of function.

2.2.2 Grouping objects for programming

·
Use a SSPanel to group objects for programming purposes (e.g. multiple sets of option buttons), rather than a Frame. Set InnerBevel and OuterBevel = 0.

·
Gridlines are not visible through the panel. One may arrange the objects on another form, then cut-and-paste them onto the panel. Make sure that the destination panel is selected, before pasting the objects. Alternatively set the BackStyle temporarily to opaque.

2.2.3 Property settings for objects

In order to simplify aligning, the following property setting are recommended:

·
Set the properties of each form to: BorderStyle = Fixed (single or double); MaxButton = False; ControlBox = False; BackColor = light. Grey; Width should be a multiple of 45 twips, and Height is a multiple of 60.

·
For labels, set AutoSize = True, which results in Height = 195, the height of a font cell.
·
For check boxes or option buttons, set Height = 195. These will then align with the labels on the alignment form.

·
Separators: each line should be 1 pixel wide. Align the dark grey line to centre of font cell. Turn the grid snap OFF in order to move the white line immediately below the dark. grey one. Remember to turn grid snap back ON afterwards.

Panels can achieve this affect. Set the Align property to vbAlignTop and vbAlignBottom. This makes the panel the full width of the form and by resizing the height of the form the top and bottom panels create the double line feature

·
Vertical scroll bars should be 240 wide and Horizontal ones are 240 high. Align initially by grid, moving it close to the text box it is controlling (see Figure 5). Turn grid snap OFF, if needed to close up any gaps, then turn in back ON.

·
SSPanel (3D panel) - set BackColor = light grey, InnerBevel = 0 and OuterBevel = 0.

·
Each command button is set at Height = 310. Width = width of the word, plus 3 grid units.

[image: image6.png]‘/ ,.: Review Site [0 x]

Amend Company St Confacts

COMPANY ENTERPRISE NAME
COMPANY NAME

Sub-piemises Premises

[Il J
P.0.Box Dependant Thoroughtare

[|| |

Thoroughfare

SubLocality i Locally | i |
[[[J

Town

County/State/Provinge POST/ZIP Code Countiy Name

[I8] [unITED KiNGDOM |
International Phone . Fax .

Telex E-mail

Figure 5 - Separate areas with different functions and/or alignments

[image: image7.png]

Figure 6 - Areas of differing alignments are placed in separate panels on the form.

2.3 Layout principles

2.3.1 Grouping

·
Align objects accurately, both horizontally and vertically. Avoid mixing rows and columns within a group or panel of items (Figure 4).

·
Group related components of an interface together, so that their relation is clear to the user. Objects of a similar kind will appear to be grouped if they are close to each other, and when they are horizontally and vertically aligned (Figure 5).

·
Visually separate groupings horizontally with space, and vertically with space or horizontal lines (Figure 7).

[image: image8.png]

Figure 7 - Groups of different objects are clearly separated by space, and accurately aligned. Note that the buttons, having a very different sort of alignment, are in a separate panel.

[image: image9.png]Slip number

Bend address

Bendeauipment . Aendequpment

[Modem

B end contact

(&N Other

T

[pTester

[B Tester

Telephone

Telephone

[piz 345873 | [p12345 788

Bepottedby ~~~ Repottedby

[lulie

| fue

Disconeeted Faint

Access hours

[

MNoisey

Intermitant fault Distant admin Updates required

———

Figure 8 - A crowded and confusing layout.

·
if space is in short supply, consider arranging the interaction to use more than one window (Figure 9).

[image: image10.png]Cireuit number

Ship number

Telephone

B end address

A end address

L Diconcerea Intermitant foull Access hous

B end equipment

B end contact

I .

Noisey PR maintained Updates required |

[| | | | I
L m&m Disant adin |

Customer name

Telephone

Reported by

Reported by

Figure 9 - A clear display, with information clearly grouped. Some fields are on a second form, because of limited screen space.

·
Arrange the components of the page to be visually balanced, and to align vertically. If part of the form is in, say, two columns, and part in three, separate the two areas with a horizontal separator.

2.3.2 Spacing

·
Ensure a minimum amount of clear space around objects, to aid clarity and usability. The actual amount will vary according to the environment the application is being developed in and for, but should remain consistent throughout all the pages of an application.

·
Make sure you design and test your application on the type of display on which it will be used. What works well on one display can look almost unrecognisable on another one.

2.3.3 Arrangement

The flow of the user's task should be reflected in the layout of the components on the screen. The actions usually performed first should be at the top. Keep adjacent actions close together on the screen.

More information regarding good layout and the sequential arrangement of a form can be found in the CUA Guidelines. [2]

2.4 Command buttons

2.4.1 Arrangement

For a thorough treatment of push buttons - their labelling, positioning, and so on, refer to The Windows Interface [3], chapters 7 and 8, or CUA Guidelines [2]. For general purposes, the following should suffice:

·
Command buttons are normally grouped at the bottom of the form, in one or more rows. Don't have more than three rows, and just one is preferable.

·
When there is more than one form in an application, use the same layout for buttons on each one.

·
Associate a label with a given action, and position on the form, consistently throughout the application.

·
The most important button (normally the default) should be at the left of a row or top of a column. Next comes Cancel, and then the other buttons which initiate actions, followed by any remaining command buttons such as Goto or Help.

2.4.2 Sizing

The Windows approach is to have all buttons the same size throughout an application. If one button requires a particularly long label, it should be treated as an exception. To follow this method,

·
The width of each button is a minimum of 21 grid units (Width = 945 twips), larger if needed (Figure 10).

·
A text label should have at least 1 grid unit space between the ends of the label and the edge of the button.

·
They should be evenly spread across the bottom of the form, with a 1 grid unit gap between them.

[image: image11.png]‘/ & Equal width buttons

= | Cancel] Delete j Vﬁeuly 1 meami

Figure 10 - Correct arrangement of equally sized buttons, Windows style.

An alternative interface for Windows takes the following approach:

·
The width of each button is determined by the size of the label plus 3 grid units, and the row is left justified (Figure 11).

·
A row of command buttons has a spacing of 1 grid unit vertically & horizontally from other command buttons.

[image: image12.png]/ g Single row

Save | Cancel | Delete | I;eply] Fnu;aldi

Figure 11 - A single row of variably sized buttons, aligned left.

Whichever approach you use, the following points hold true:

·
Place the Cancel button next to the default action button.

·
Avoid multiple width buttons in multiple rows (Figure 12). There should be no more than two widths present in a window (Figure 11).

·
If two widths are used, use the larger size buttons to reflect the more important tasks (Figure 12).

·
Make all command buttons in a column as wide as the widest button, with the default button at the top. Use this approach if they can't be laid out in rows (Figure 14).

[image: image13.png]o P —

0K | Cancel | Delete | Forward
Respand Show settings

Figure 12 - A double row of command buttons, showing how up to two different widths may be combined.

[image: image14.png]Delote | e | .F\;mal;i-! ”ﬂeniy. § Receipt |

Acknowledge Show settings

Figure 13 - An example of poor layout of a double row of command buttons.

[image: image15.png][% Buttons B3|
x e

Correctly aligned, Wrong - variable Wrong - variable
spaced and sized. sizes and left-aligned. sizes and too close.

Figure 14 - Correct and incorrect arrangement of buttons in columns.

2.4.3 Alignment

Vertical alignment of the buttons is based on a tighter spacing of font cells for command buttons, shown in Figure 14. This is determined by moving the font cells on the alignment form together (with the grid snap ON), closing the normal gap between them.

·
The edge of the form below the last row of buttons is aligned with the centre of a font cell, in the same manner as the separators, using the tighter spacing of the font cells mentioned above.

·
A row of command buttons has a spacing of 1 grid unit horizontally (45 twips) from other command buttons.

·
A double row of buttons has a 1 grid unit gap (60 twips) between the rows.

·
A single column of command buttons should have 2 grid units minimum spacing either side, and the text on the buttons aligns with alternate lines on the alignment form, using the tightly spaced font cells.

·
 Multiple columns are separated horizontally and vertically by only one grid unit

[image: image16.png]iDocumant referance:
Tenti

o 7

I Paper copy

™ Inconfidence 1™ Distiibution notes

Figure 15 - Aligning a row of buttons on the bottom of a form.

2.5 Font information

2.5.1 General Guidelines

·
Do not use italics, they affect readability.

·
Use black text on forms, dark grey for disabled options, and white on the title bar.

·
Capitalise only the first letter in any label or caption, unless it contains a proper noun or abbreviation.

2.5.2 VGA compatibility
In order to ensure a reasonable fit on 800x600 resolution screen,

·
Use MS Sans Serif 8 (bold) for text on forms.
·
Use MS Sans Serif or Courier New as the user font (e.g., in text boxes), in normal 8 pt.

·
DO NOT SUBSTITUTE the Corporate font (Century Old Style and Century Old Style italic) with other fonts (e.g. Times Roman italic).
This will allow a closer spacing than with the 10 System font. If you know that only 800 x 600 and above will be used, you may use System for the text on forms, and MS Sans Serif 10 (normal) as the user font. This is particularly useful when the application is used for tele-operators. Large fonts on a 17” 1024x768 display are more easy read.

The fonts and form sizes will scale to the various screen resolutions. The Windows driver for 800 x 600 'large fonts' will produce forms which are nominally the same size as VGA resolution, for a given monitor. Likewise, 800 x 600 'small fonts' and 1024 x 768 'large fonts' are approximately the same size, about 75 - 80% of the size on a VGA setting.

[image: image17.png]i is a simple page fom
an application which
describes the variouz
stages of the problem
Solving Wheel. It has a
simple to use interface.
ned to be easy for
the user to understand

Figure 16 - A less database-like application still benefits from using standard alignments to enhance consistency. Colour also has a use here, linking the symbols on each subsequent page.

2.6 Summary of settings

2.6.1 Properties
Object
Height
Width
BackColor
Other

Form
multiple of 60
multiple

of 45
Light grey
Border = fixed (single or double);

MaxButton = False

label
195
~~
Light grey
AutoSize = True

Check Box
195
~~
Light grey
use 3D version when available

Option button
195
~~
Light grey
use 3D version when available

Text Box
285
~~
white
BackColor = light. blue for required datafields

Command Button
310
(label + 3 g.u.) or min 21 g.u.
Light grey

HScrollBar
240

n.a.
adjacent to text box

VScrollBar

240
n.a.
adjacent to text box

Line
n.a.
1
n.a.
BorderColor = white or dark grey

Frame
X
X
X
don't use

SSFrame
X

X
don't use

PictureBox
~~
~~
Light grey
Border Style = 0

SSPanel
~~
~~
Light grey
InnerBevel = 0; OuterBevel = 0;

use instead of frame for grouping

components

2.6.2 Colours

Colours
white
light grey
dark grey
dark grey

Hexadecimal no.
 &H80000005&
&H00C0C0C0&
 &H00808080&
&H00000000&

3 Rationale

3.1 Introduction

With the proliferation of PCs in offices, many groups are writing applications for themselves to improve their efficiency utilising Microsoft Office (e.g. Excel and Access).

This Style Guide is designed to assist those who have little or no training in interface design, perhaps with little time to research the issues, and who want to produce a professional looking application in line with GFG Microsystems Limited Standards.

Visual Basic and Access are recognised as the most common development package being used so far, for small local applications as well as products intended for customers. Hence it is the one mainly referred to in this Style Guide. The principles, however, may easily be interpreted for other programming tools.

It is only a brief overview of the main points concerning design and layout of interfaces for Windows applications. For a more in-depth treatment of a specific area, look up the references cited in the relevant section.

3.2 Basic design principles

3.2.1 First of all...

As always, before designing an interface, ask yourself these questions:

·
Who will be using the finished application?

Consider possible physical limitations, different cultural backgrounds, the expected working environment, etc.

·
What knowledge will they bring with them to the application?

e.g., experienced with standard DOS or Windows interactions; no experience of computers at all; different interpretations of colours or images.

·
What are the limitations of the equipment?

e.g., screen size and resolution, colours available, type of keypad or cursor control.

It may be useful to summarise your answers in writing, to give yourself some reminder as you work. See the CUA Guidelines [2] for a useful discussion of the human aspects of interface design.

The design of your interface should be clear and easy to understand. Overcrowding, too many colours, a complicated pattern of actions for the user and muddled work areas will make an application harder to use. Make sure controls are easy to interpret and to use.

3.2.2 Simplicity

Aim for simplicity in the display layout, with elements clearly grouped, and unambiguous user choices. Sometimes it is better to put extra information on a subsidiary window, rather than overcomplicating the display.

3.2.3 Explicitness

Give each area of a form a clear purpose, and separate areas of different purposes from each other with space or lines. Choose names of command buttons and other labels carefully.

Use pictorial controls with caution - don't assume that what you feel is 'intuitive' will be the same for the end user. Get evidence to back up your decisions. Be aware of the physical aspects of usability, such as how easy something is to read on the equipment being used, or size and placement of direct manipulation controls.

3.2.4 Consistency

Be consistent throughout the application in the position, grouping, alignment and colour of objects. This enables the user to learn their way around more quickly. Inconsistency should only be used where it functions as a deliberate check on the user's response to an important error message, or similar situations.

3.2.5 Basic colour philosophy

Colours used in a business setting should not be distracting or tiring to use hour by hour, day after day. Some use of colour, however, is valuable to help the user to see where to go and what to do - e.g. red, to signify 'alert' or 'danger'. Colour should not be used merely as decoration.

4 Other Windows toolSets

4.1 Access

4.1.1 Overview

Access is Microsoft's database developing program. The toolset and interface are similar to Visual Basic, with some additional graphical manipulation options.

4.1.2 Similarities

The basic structure of forms and objects is the same, with the extra parts needed to support a database. The look of the various objects, graphically, is the same, so the resulting applications would have a similar appearance.

The toolset in Access looks very basic at first, but normal/raised/sunken options are available on most objects via a separate dialogue.

4.1.3 Differences

As is common with databases, when a field is placed on the form, the field name is the default label and is placed to the left on the same line. This can be removed and replaced with a different text, in a different place. The fields may be shown as inset, which can be useful in offering visual cues to the user.

The grid is defined in inches or centimetres (1-64 divisions) - much more understandable than twips! There are commands for aligning left/right/centre/to grid, which makes layout rather easier, and horizontal/vertical rulers are available on screen.

4.2 Oracle

4.2.1 Overview
Oracle is a suite of programs for developing databases, and recently a toolset has been developed for generating Windows applications. It uses its own language, which is large, and takes time to learn. The various programs are extensive. As a result, it is very powerful and the user has much more control over the graphical appearance of the interface.
4.2.2 Similarities

Very few, apart from standard Windows capabilities.
4.2.3 Differences

The properties of the various objects on a form are defined in a dialogue box, and many aspects are only visible at run time.

The grid is defined in inches, centimetres or points. Objects may be aligned left/right/centre or top/bottom/middle. Fields can be recessed.

� Although the default of small fonts produces 15 twips per pixel, large fonts (as used typically for 1024x768 on 15” monitors) this is 12 twips per pixel.

� A grid unit is one square on this grid.

GFG IT-UK-99-SO 30/0.02
22 of 22
16 March 1998

_953159081.tiff

_953159334.tiff

_953159790.tiff

_953159918.tiff

_953159965.tiff

_953160032.tiff

_953159863.tiff

_953159602.tiff

_953159722.tiff

_953159392.tiff

_953159191.tiff

_953159240.tiff

_953159141.tiff

_953158974.tiff

_953159035.tiff

_953158916.tiff

